Startle phase of escape swimming is controlled by pedal motoneurons in the pteropod mollusk Clione limacina.
نویسندگان
چکیده
Escape swimming in the pteropod mollusk Clione limacina includes an initial startle response in which one or two powerful wing beats propel the animal up to 18 body lengths per second, followed by a variable period of fast swimming with a maximal speed of 6 body lengths per second. The initial startle response is the focus of this report. Two pairs of large pedal neurons (50-60 microns) initiate wing contractions that are several times stronger than those produced during slow or fast swimming. These "startle" neurons are silent, with very low resting potentials and high activation thresholds. Each startle neuron has widespread innervation fields in the ipsilateral wing, with one pair of neurons innervating the dorsal musculature and producing dorsal flexion of the wing (d-phase) and the other innervating the ventral musculature and producing a ventral flexion of the wing (v-phase). Startle neurons are motoneurons, because they produce junctional potentials or spike-like responses in both slow-twitch and fast-twitch muscle cells with 1:1 ratios of spikes to excitatory postsynaptic potentials. Muscle activation persists in high-divalent saline, suggesting monosynaptic connections. The musculature innervated by startle neurons is the same used during normal slow and fast swimming. However, startle neuron activity is independent of normal swimming activity: startle neurons do not influence the activity of swim pattern generator interneurons or motoneurons, nor do swim neurons alter the activity of startle neurons. The startle response shows significant response depression with repetitive mechanical stimulation of the tail or wings. A major focus for this depression is at the neuromuscular junction. In reduced preparations, repetitive direct stimulation of a startle neuron does not result in a significant decrease in spike number or frequency, but does produce a decrease in force generation (decrease to 20% of original value after 5 stimuli delivered at 3-s intervals). Inputs that activate the wing retraction reflex as well as swim inhibition inhibit startle neurons. The inhibition appears to originate in the retraction interneurons, because direct connections from retraction sensory cells or retraction motoneurons are not found. Mechanical stimulation of a wing or the tail, which usually initiates startle response in intact animals, produces spikes or large EPSPs in startle neurons. The startle neurons appear to be likely candidates for direct control of the swim musculature during the startle phase of escape swimming in Clione.
منابع مشابه
Cholinergic activation of startle motoneurons by a pair of cerebral interneurons in the pteropod mollusk Clione limacina.
The holoplanktonic pteropod mollusk Clione limacina exhibits an active escape behavior that is characterized by fast swimming away from the source of potentially harmful stimuli. The initial phase of escape behavior is a startle response that is controlled by pedal motoneurons whose activity is independent of the normal swim pattern generator. In this study, a pair of cerebral interneurons is d...
متن کاملCoordination of startle and swimming neural systems in the pteropod mollusk Clione limacina: role of the cerebral cholinergic interneuron.
The holoplanktonic pteropod mollusk Clione limacina has a unique startle system that provides a very fast, ballistic movement of the animal during escape or prey capture behaviors. The startle system consists of two groups of large pedal motoneurons that control ventral or dorsal flexions of the wings. Although startle motoneurons innervate the same musculature used during normal swimming, they...
متن کاملChanges in wingstroke kinematics associated with a change in swimming speed in a pteropod mollusk, Clione limacina.
In pteropod mollusks, the gastropod foot has evolved into two broad, wing-like structures that are rhythmically waved through the water for propulsion. The flexibility of the wings lends a tremendous range of motion, an advantage that could be exploited when changing locomotory speed. Here, we investigated the kinematic changes that take place during an increase in swimming speed in the pteropo...
متن کاملCellular Mechanisms Underlying Swim Acceleration in the Pteropod Mollusk Clione limacina.
The pteropod mollusk Clione limacina swims by dorsal-ventral flapping movements of its wing-like parapodia. Two basic swim speeds are observed-slow and fast. Serotonin enhances swimming speed by increasing the frequency of wing movements. It does this by modulating intrinsic properties of swim interneurons comprising the swim central pattern generator (CPG). Here we examine some of the ionic cu...
متن کاملCellular Mechanisms Underlying Swim Acceleration in the Pteropod Mollusk Clione limacina1
SYNOPSIS. The pteropod mollusk Clione limacina swims by dorsal-ventral flapping movements of its winglike parapodia. Two basic swim speeds are observed—slow and fast. Serotonin enhances swimming speed by increasing the frequency of wing movements. It does this by modulating intrinsic properties of swim interneurons comprising the swim central pattern generator (CPG). Here we examine some of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 77 1 شماره
صفحات -
تاریخ انتشار 1997